Transplasma membrane electron transport comes in two flavors.

نویسندگان

  • Darius J R Lane
  • Alfons Lawen
چکیده

All tested cells possess transplasma membrane electron transfer (tPMET) systems that are capable of reducing extracellular electron acceptors at the cost of cytosolic electron donors. In mammals, classically NAD(P)H- and NADH-dependent systems have been distinguished. The NADH-dependent system has been suggested to be involved in non-transferrin-bound iron (NTBI) reduction and uptake. Recently we reported that transplasma membrane ascorbate/dehydroascorbate cycling can promote NTBI reduction and uptake by human erythroleukemia (K562) cells (D.J.R. Lane and A. Lawen, J Biol Chem 28 (2008), 12701-12708). This system, involves i) cellular import of dehydroascorbate, ii) intracellular reduction of dehydroascorbate to ascorbate using metabolically-derived reducing equivalents, iii) export of ascorbate down its concentration gradient, iv) direct reduction of low molecular weight iron chelates by ascorbate, and v) uptake of iron (II) into the cell. We here propose the consideration of this system as a novel form of tPMET which shares with classical enzyme-mediated tPMET systems the net transfer of reducing equivalents from the cytoplasmic compartment to the extracellular space, but lacks the involvement of the plasma membrane oxidoreductases responsible for the latter. Thus, transplasma membrane electron transfer can and does occur at two mechanistically distinct levels: i) enzyme-mediated transmembrane electron transfer and ii) transmembrane metabolite shuttling/cycling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ascorbate-mediated transplasma membrane electron transport in pulmonary arterial endothelial cells.

Pulmonary endothelial cells are capable of reducing certain electron acceptors at the luminal plasma membrane surface. Motivation for studying this phenomenon comes in part from the expectation that it may be important both as an endothelial antioxidant defense mechanism and in redox cycling of toxic free radicals. Pulmonary arterial endothelial cells in culture reduce the oxidized forms of thi...

متن کامل

Transmembrane Electron Transport in Plasma Membrane Vesicles Loaded with an NADH-Generating System or Ascorbate.

Sugar beet (Beta vulgaris L.) leaf plasma membrane vesicles were loaded with an NADH-generating system (or with ascorbate) and were tested spectrophotometrically for their ability to reduce external, membrane-impermeable electron acceptors. Either alcohol dehydrogenase plus NAD(+) or 100 millimolar ascorbate was included in the homogenization medium, and right-side-out (apoplastic side-out) pla...

متن کامل

Intracellular redox status affects transplasma membrane electron transport in pulmonary arterial endothelial cells.

Pulmonary arterial endothelial cells possess transplasma membrane electron transport (TPMET) systems that transfer intracellular reducing equivalents to extracellular electron acceptors. As one aspect of determining cellular mechanisms involved in one such TPMET system in pulmonary arterial endothelial cells in culture, glycolysis was inhibited by treatment with iodoacetate (IOA) or by replacin...

متن کامل

A role for Na+/H+ exchangers and intracellular pH in regulating vitamin C-driven electron transport across the plasma membrane.

Ascorbate (vitamin C) is the major electron donor to a tPMET (transplasma membrane electron transport) system that was originally identified in human erythrocytes. This plasma membrane redox system appears to transfer electrons from intracellular ascorbate to extracellular oxidants (e.g. non-transferrin-bound iron). Although this phenomenon has been observed in nucleated cells, its mechanism an...

متن کامل

NADH-Ferricyanide Reductase of Leaf Plasma Membranes1

Plasma membranes obtained by two-phase partitioning of microsomal fractions from spinach (Spinacea oleracea L. cv Medania) and sugar beet leaves (Beta vulgaris L.) contained relatively high NADH-ferricyanide reductase and NADH-nitrate reductase (NR; EC 1.6.6.1) activities. Both of these activities were latent. To investigate whether these activities were due to the same enzyme, plasma membrane ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BioFactors

دوره 34 3  شماره 

صفحات  -

تاریخ انتشار 2008